Defects in the Revised Definition of Standard ML

Andreas Rossberg
Universitat des Saarlandes
rossberg@s. uni - sh. de

Updated 2007/01/22

1 Introduction

This documeritis intended to be a comprehensive list of all known bugs, goities,
problems and other ‘grey areas’ in the revised Definitiontah8ard ML [MTHM97]. For
better overview of what really is important the issues aassified into several categories:

e major. mistakes that compromise soundness without an obviouhéikcreate prob-
lems for implementers, or lead to annoying incompatiblesmagrimplementations,

e minor. mistakes that leave open questions as well but do not seenodinice prob-
lems in practice,

e pedantic nitpicking on issues that are not “quite right” but evergigdnows how to
interpret them,

e typos obvious slips in formal bits.

The list marks with * all issues that have been newly intratus SML'97. Others are
inherited from SML'90 [MTH90].

Note that this compilation does not try to be a general aréigf the language. It does
not discuss design decisions or weaknesses of particalturés, but merely lists problems
with the specification of the language.

2 Issuesin Section 2 (Syntax of the Core)
Section 2.5 (Lexical analysis):

e [minor] In Section 2.2 the Definition includes only space, tab, nesyland form-
feed into the set of obligatory formatting characters, #ratallowed in source code.
However, some major platforms require use of the carriagenmeharacter in text
files. In order to achieve portability of sources acrossptats it should be included
as well. Preferably, for consistency, all formatting cluéeas should be included, for
which there is explicit escape syntax.

1This document has been derived from Appendix A of the docuatien to HaMLet, www.ps.uni-
sh.de/hamlet

rossberg@ps.uni-sb.de

Section 2.6 (Infixed Operators):

e [minor] The Definition says that “the only required useogf is in prefixing a non-
infixed occurrence of an identifier which has infix status”islik rather vague, since
it is not clear whether occurrences in constructor and eiaebindings count as
non-infixed [K93].

Section 2.8 (Grammar), Figure 4 (Expressions, Matchesabst®ons and Bindings):

e [pedantic] The syntax rules forec are highly ambiguous. The productions for
empty declarations and sequencing allow the derivationrlotrary sequences of
empty declarations for any input.

e [pedantic] Another ambiguity is that a sequence of the fafea; decs decs can be
reduced in two ways tdec: either viadecio decs Or viadecy decos [K93]. See also
section 3.

Section 2.9 (Syntactic Restrictions):

e [pedantic] * The restriction thatvalbinds may not bind the same identifier twice
(2nd bullet) is not a syntactic restriction as it dependshmidentifier status of the
vids in the patterns of aalbind. ldentifier status is derived by the elaboration rules.

Ideally, all restrictions should be handled by appropr&ade conditions in the rules
of the static semantics instead.

e [minor] * An important syntactic restriction is missing:

“Any tyvar occurring on the right side of aypbind or datbind of the
form tyvarseq tycon = - - - must occur infyvarseq.”

This restriction is analogous to the one givendfigrars in type specifications (section
3.5, item 4). Without it the type system would be unsouind.

3 Issuesin Section 3 (Syntax of Modules)
Section 3.4 (Grammar for Modules), Figure 6 (Structure agd&ure Expressions):

e [pedantic] The syntax rules fostrdec contain the same ambiguities with respect to
sequencing and empty declarations as thosddo(see section 2).

e [minor] Moreover, there are two different ways to reduce a sequéace dec, of
core declarations into &rdec: via strdecy strdeco and viadec [K93]. Both parses
are not equivalent since they provide different contextsofeerloading resolution
(Appendix E). For example, appearing on structure level ftfo declarations

=X + X
f 1.0

2Interestingly enough, in the SML'90 Definition the restiict was present, but the corresponding one for
specifications was missing [MT91].

fun f x
val a =

may be valid if parsed agec, but do not type check if parsed agdec; strdecs
because overloading of gets defaulted té nt . The problem does not seem to
arise in practice, though, because most implementatioessonaller contexts for
overloading resolution (see section 12).

e [minor] Similarly, it is possible to parse a structure-lel/elcal declaration con-
taining only core declarations in two ways: asia or as astrdec [K93]. This
produces the same semantic ambiguity.

Section 3.4 (Grammar for Modules), Figure 7 (Specificafions

e [pedantic] Similar as fordec and strdec, there exist ambiguities in parsing empty
and sequencespecs.

e [minor] The ambiguity extends to sharing specifications. Consider:

type t
type u
sharing typet = u

This snippet can be parsed in at least three ways, with théngheonstraint taking
scope over either both, or only one, or neither type spetificaSince only the first
alternative can be elaborated successfully, the validitthe program depends on
how the ambiguity is resolved.

The proper and most permissive disambiguation rule is toersakuential specifica-
tions and sharing specifications both left associativeeastime precedence level. It
could be expressed as a syntactic restriction stating tae $pec, in a sequential
specification may not contain a sharing specification.”

Section 3.4 (Grammar for Modules), Figure 8 (Functors arti&vel Declarations):

e [minor] * Finally, another ambiguity exists for reducing a sequesitedec; strdecs
to atopdec: it can be done either by first reducingdtrdec, or to strdecy topdec,.
The latter is more restrictive with respect to free type afales (but see section 13
with regard to this).

Altogether, ignoring the infinite number of derivationsdhwing empty declarations, the
grammar in the Definition allows three ambiguous ways to cedusequence of twidecs
to atopdec, as shown by the following diagram. All imply different semtias. A further
ambiguity arises at the program level (see section 8).

decl deCQ

strdecl strdeco

sz‘rdec sfrdecl topdecy

topdec

4 |ssuesin Section 4 (Static Semantics for the Core)

Section 4.8 (Non-expansive Expressions):

e [minor] * The definition of non-expansiveness is purely syntactid does only
consider the right hand side of a binding. However, an exeephay result from
matching against a non-exhaustive pattern on the left hiled $t is rather incon-
sistent to disallow ai se expressions in non-expansive bindings but allow implicit
exceptions in the disguise of pattern match failure. Mor@mssly, the possibility of
exceptions stemming from polymorphic bindings is incontpatwith type passing
implementations.

Section 4.9 (Type Structures and Type Environments):

e [pedantic] The definition of the Abs operator demands introduction eftrdistinct”
type names. However, type names can only be new relative tmext. To be
precise, Abs would thus need an additional arguniefK96].

e [minor] Values inabst ype declarations that are potentially polymorphic but re-
quire equality types have no principal type [K96]. For exéanm the declaration

abstypet = T with
fun eq(x,y) = x =y
end

the principal type okq insidethe scope ohbst ype clearly is’ " a * a->
bool . However, outside the scope this type is not principal begatia cannot
be instantiated by . Neither wouldt * t -> bool be principal, of course. Al-
though not strictly a bug (there is nothing which enforceshesence of principal
typings in the revised Definition), this semantics is vergdta implement faithfully,
since type inference had to deal with unresolved type schend to cascadingly
defer decisions about instantiation and generalisatidih tinie correct choice is de-
termined. Most if not all SML implementations assigq the type’ "a * '’ a
-> bool .

e [minor] A related problem is the fact that the rules tdist ype may infer type
structures that do not respect equality [K96]:

abstypet = T with
datatype u = U of t
end

Outside the scope of thehst ype declaration types will still be an equality type.
Values of type can thus be compared through the backdoor:

fun eqT(x,y) =Ux = Uy
Section 4.10 (Inference Rules):

e [minor] * The comment to rule 26 states that a declaration like

datatype t = T
val rec T =fn x => x

is legal sinceC + VE overwrites identifier status. However, this comment omits a
important point: in the corresponding rule 126 of the dyrmaseimantics recursion is
handled differently so that the identifier statusic overwritten. Consequently, the
second declaration will raiseB nd exception. It arguably is a serious ill-design to
infer inconsistent identifier status in the static and dyitasamantics, but fortunately
it does not violate soundness in this case. Most implemientatio not implement
the ‘correct’ dynamic semantics, though.

e [typo] There is an unmatched left parenthesis in the consequenlen28.
Section 4.11 (Further Restrictions):

e [minor] Under item 1 the Definition states that “the program contextist deter-
mine the exact type of flexible records, but it does not syexify bounds on the size
of this context. Unlimited context is clearly infeasiblese it is incompatible with
separate compilation and withet polymorphism: at the point of generalisation the
structure of a type must be determined precisely enough ¢a kmhat we have to
quantify over® The context should thus be restricted to at least the inngtruadue
declaration surrounding the flexible record pattern.

e [minor] Under item 2 the Definition demands that a compiler must giaemmgs
whenever a pattern is redundant or a match is non-exhaustbweever, this require-
ment is inconsistent for two reasons:

1. * There is no requirement for consistency of datatype tan®rs in sharing
specifications or type realisations. For example,

datatype t = A| B
datatype u = C
sharing typet = u

is a legal specification. Likewise,
sig datatypet = A | B end where type t = bool

is valid. Actually, this may be considered a serious bug smvtn, although
the Definition argues that inconsistent signatures are ¥of significant in

practice” (section G.9). If such an inconsistent signatsnesed to specify a
functor argument it allows a mix of constructors to appeamiiches in the
functor’s body, rendering the terms of irredundancy andaestiveness com-
pletely meaningless.

2. ltis difficult in general to check equality of exceptiomstructors — they may
or may not be aliased. Inside a functor, constructor equaldight depend on
the actual argument structure the functor is applied te. poissible to check all
this by performing abstract interpretation (such that retlunt matches are de-
tected at functor application), but this is clearly infédsiweighed against the
benefits, in particular in conjunction with separate coatjmh. The Definition
should point out that it only requires considering syntaetjuivalence in the
case of exception constructors.

5 |Issuesin Section 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

3Polymorphic approaches to record typing are clearly nopstpd by the Definition.

e [pedantic] * The rules 64 and 78 use the notati¢ty — 6,---,t, — 0,} to
specify realisations. However, this notation is not defiaegwhere in the Definition
for infinite maps like realisations — section 4.2 only intngds it for finite maps.

e [minor] * More seriously, both rules lack side conditions to ensumesistent arities
for domain and range of the constructed realisation. Bexausan hence fail to be
well-formed (section 5.2), the applicatigr{ E) is not well-defined. The necessary
side conditions are:

t € TyNamé® (64)

t; € TyNamé® i = 1..n (78)

e [minor] * The presence of functors provides a form of explicit polyptusm which
interferes with principal typing in the core language. Gdasthe following example
[DBO7]:

functor F(type t)
struct val id (fn x => x) (fn x => x) end

structure A = F(type t int)

structure B = F(type t bool)

val a = Aid 3

val b = B.id true

The declaration off d cannot be polymorphic, due to the value restriction. Néagert
less, assigning ittype - > t would make the program valid. However, finding this
type would require the type inference algorithm to skolengilt undetermined types
in a functor body’s result signature over the types appearirits argument signa-
ture, and then perform a form of higher-order unificationn&€muently, almost all
existing implementations reject the progréam.

e [minor] * The side conditions on free type variables in rules 87 and@%9ot have
the effect that obviously was intended, see section 13.

6 Issuesin Section 6 (Dynamic Semantics for the Core)
Section 6.4 (Basic Values):

e [pedantic] The APPLY function has no access to program state. This sigtfeat
library primitives may not be stateful, implying that a Idtiateresting primitives
could not be added to the language without extending the efiritself [K93].

On the other hand, any non-trivial library type (e.g. array&O streams) requires
extension of the definition of values or state anyway (andalityLtypes — consider
ar r ay). The Definition should probably contain a comment in thigarel.

4Interestingly, MLton accepts the program, thanks to itsudeforization approach. However, it likewise
accepts similar programs that avetvalid Standard ML, e.g.:

functor F()
structure A = F()
structure B = F()
val a = Aid 3

val b B.id true

struct val id = (fn x => x) (fn x => x) end

7 lIssuesin Section 7 (Dynamic Semantics for M odules)
Section 7.2 (Compound Objects):

e [typo] * Inthe definition of the operata: EnvxInt — Env, the triple {SI, TE, VI)”
should read ('S, TI, VI)".

Section 7.3 (Inference Rules):

e [typo] * Rule 182 contains a typo: both occurrencegBfhave to be replaced hy.
The rule should actually read:

InterB + sigexp = I (B F funbind = F)
Bt funid (strid : sigexp) = strezp (and funbind) =
{funid — (strid : 1, strexp, B)}{(+F)

(182)

e [typo] * The rules for toplevel declarations are wrong: in the casins, the result
right of the arrow must b&’(+B") instead ofB’(’) in all three rules:

B strdec = E B’ =FEinBasis (B+ B’ topdec = B")

184

B+ strdec (topdec) = B'(+B") (184)

InterB & sigdec == G~ B’ =G inBasis (B + B’ topdec = B") (185)
B+ sigdec (topdec) = B'(+B")

Bt fundec = F B’ =FinBasis (B+ B'F topdec = B") (186)

B I- fundec (topdec) = B'{(+B'")

8 Issuesin Section 8 (Programs)

e [minor] The comment to rule 187 states that a failing elaborationrtwasffect.
However, it is not clear what infix status is in scope afterikinfg elaboration of a
program that contains top-level infix directives.

e [minor] * There is another syntactic ambiguity for programs. A netséction 3.4,
Figure 8 restricts the parsing edpdecs:

“No topdec may contain, as an initial segmentsadec followed by a
semicolon.”

The intention obviously is to make parsing of toplevel sesftins unambiguous so
that they always terminate a program. As a consequence @iitsing ambiguities
for declaration sequences (see section 3) the rule is nficisut, however: a se-
qguencedecy; decs; of core level declarations with a terminating semicolon ban
first reduced talec;, then tostrdec;, and finallyprogram. This derivation does not
exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid
parse, which results in quite different behaviour with extpio program execution.

e [pedantic] The negative premise in rule 187 has unfortunate implioaticinter-
preted strictly it precludes any conforming implementatimm providing any sort
of conservative semantic extension to the language. Amgnsian that allows dec-
larations to elaborate that would be illegal according Befinition (e.g. consider
polymorphic records) can be observed through this rule aadge the behaviour of
consecutive declarations. Consider for example:

val s = "no";
strdec

val s = "yes";
print s;

where thestrdec only elaborates if some extension is supported. In that tase
program will printyes, otherwiseno.

This probably indicates that formalising an interactivelével is not worth the trou-
ble.

9 Issuesin Appendix A (Derived Forms)

Text:

e [pedantic] The paragraph explaining rewriting of tifenlbind form rules out mix-
tures offvalbinds and ordinarwalbinds. However, the way it is formulated it does
not rule out all combinations. It should rather say that allre bindings of the form
pat = exp and fvalbind or rec fvalbind are disallowed.

Figure 15 (Derived forms of Expressions):

e [pedantic] The Definition is somewhat inaccurate about several of thigetbforms
of expressions and patterns. It does not make a proper distinbetween atomic
and non-atomic phrases. Some of the equivalent forms aiie tiot same syntactic
class [MT91, K93].

Figure 17 (Derived forms of Function-value Bindings and Restions):

e [minor] The syntax offvalbinds as given in the Definition enforces that all type
annotations are syntactically equal, if given. This is wassarily restrictive and
almost impossible to implement [K93]. The obvious soluti®the more permissive
syntax:

(op)vid atpaty, --- atpaty, (ty;) = exp,
i (op)vid atpaty, --- atpaty, (:tys) = expsy
| {(op)vid atpat,,; - - - atpat,,, {:ty,,) = exp,,
(and fvalbind)

This probably was the original intention of the authors aayw
Figure 19 (Derived forms of Specifications and SignaturerBsgions):

e [minor] * The derived form that allows several definitional type dfieations to be
connected viand is defined in a way that makes its scoping rules inconsistéht w
all other occurences @nd in the language. In the example

10

Text:

type t = int
signhature S =
sig
type t bool
and u =t

end

typeu will be equal tobool , noti nt like in equivalent declarations. It would have
been more consistent to rewrite the derived form to

i ncl ude
sig type tyvarseq, tycon,
and ---

and tyvarseq,, tycon,,
end where type tyvarseq, tycon; = ty,

where type tyvarseq, tycon, = ty,
and delete the separate derived form for single definitispetifications.
[pedantic] * The Definition defines the phrase
spec shar i ng longstrid, = - - - = longstrid,,

as a derived form. However, this form technically is not aivéet form, since it
cannot be rewritten in a purely syntactic manner — its exppandepends on the
static environment.

[major] * The derived form for type realisations connecteddmd is not only com-

pletely redundant and alien to the rest of the languagé (s nowhere else followed
by a second reserved word), it also is tedious to parse, giigpart of the grammar
is LALR(2) as it stands. It can be turned into LALR(1) only bipanch of really ugly

transformations. Consequently, almost no SML system séeims implementing it
correctly. Even worse, several systems implement it in a that/leads to rejection
of programaotusing the form.

I ssuesin Appendix B (Full Grammar)

[pedantic] The first sentence is not true since there is a derived formpriograms
(Figure 18). Moreover, it is not obvious why the appendixagfs from also pro-
viding a full version of the module and program grammar. htains quite a lot of
derived forms as well, and the section title leads the redexpect it.

[minor] The Definition gives precedence rules for disambiguatingessions, stat-
ing that “the use of precedence does not increase the clasdnmutsible phrases”.
However, the rules are not sufficient to disambiguate alsiinbs phrases. Moreover,
for some phrases they actually rule amtypossible parse, e.g.

a andalso if b then c else d orelse e

has no valid parse according to these rules. So the abowwrsat is rather in-
consistent [K93]. The common way to deal with this probaklya just use Yacc

precedence declarations for expression keywords thatgmond to the precedence
hierarchy given in the Definition. This seems to be the besttwapproximate the
intention of the Definition’s rules.

e [magjor] There is no comment on how to deal with the most annoying probih
the full grammar, the infinite look-ahead required to paxs@lginations of function
clauses andase expressions, like in:

case el of z => e2
e3

fun f x

| £y
According to the grammar this ought to be legal. Howeversipgrthis would ei-
ther require horrendous grammar transformations, baaiitrg, or some nasty and
expensive lexer hack [K93]. Consequently, there is no SMplémentation being
able to parse the above fragment. To legalise the behavfompdementations, an
informal restriction of the form

The expressionszp = 1,..., exp,,_; in a fvalbind may not terminate
with amatch.

could be added.
Figure 21 (Grammar: Declarations and Bindings):

e [minor] The syntax given foffvalbind is incomplete as pointed out by the corre-
sponding note. This is not really a bug but sloppy enough tseadome divergence
among implementations.

Figure 22 (Grammar: Patterns):

e [minor] While there are additional non-terminaisfexp and appezp to disam-
biguate parsing of infix expressions, there is no such diggumakion for patterns.
This implies that a pattern likg: t ++ y can be parsed iF+ is an appropriate
infix constructor [K96]. Of course, this would result in hgayrammar conflicts.

This appears to be an oversight. The full grammar obviouslpiémented by all
SML systems is something like:

atpat = ...like before...
apppat = atpat

(op)longuvid atpat
infpat = apppat

infpat, vid infpaty
pat n= infpat

pat : ty

(op)vid (: ty) as pat

11 Issuesin Appendix D (Thelnitial Dynamic Basis)

e [minor] The Definition does specify the minimal initial basis butdies not specify
what the initial state has to contain. Of course, it shouldadt contain the exception
namedvat ch andBi nd. The obvious definition thus is:

so = ({}, {Match,Bind})

10

e [pedantic] The Definition does nowhere demand that the basis a libranigees has
to be consistent in any way. Nor does it require consisteretyden intial basis and
initial state.

I ssuesin Appendix E (Overloading)

e [major] Overloading is the most hand-waving part of the otherwisagntly accu-
rate Definition. Due to the lack of formalism and specific sileverloading resolu-
tion does not work consistently among SML systems. For exantype-checking
of the following declaration does not succeed on all systems

fun f(x,y) = (x +y)ly

e [minor] The Definition defines the overloading mechanism by enurimerat! over-
loaded entities the library provides. This is rather unfoéte. It would be desirable
if the rules would be a bit more generic, avoiding hardcodiverloading classes and
the set of overloaded library identifiers on one hand, armhétig libraries to extend
it in systematic ways on the other. More generic rules coldd aerve as a better
guidance for implementing overloading.

A more generic description of overloading classes mightobi@tmalise them as a
pair of a type name set and the type name being the designefizaltd

(T,t) € OverloadingClass- Fin(TyNamé®) x TyNamé®)
An overloading class igell-formediff the following properties hold:

teT 1)
Eq(T)=0 Vv tadmitsequality @)

where EqT) = {t € T | tadmits equality. A set{(T1,¢1), -, (Tn,t,)} Of
overloading classes onsistentff

foralli € {1,..,n}, (Ti,t;) well-formed 3
fOfa”i,jE{l,..,n}, TiﬁT]‘:@ V |{ti,t]‘}ﬁTiﬁTj| =1 (4)

The set of all overloading classes used in an initial basistime consistent. A library
could provide arbitrary overloading classes, as long ag dabere to these restric-
tions. The restrictions guarantee that intersection ofloading classes is reflexive,
associative and commutative with respect to the defaultthatithere always is a
unigue default. We claim that this is necessary to make dtefgwnambiguous and

enable a feasible type inference algorithm. Note that tipesperties hold for the

minimal initial basis given in section E.1, although the D#ibn forgets to demand

that any extension of the basic overloading classes musitmstent with respect to
equality (well-formedness property (2)).

e [minor] * That the Definition specifies anpperbound on the context a compiler
may consider to resolve overloading is quite odd — of counsplementations can-
not be prohibited to conservatively extend the language bking more programs
elaborate. On the other hand, much more important would haea to specify a
lower bound on what implementatiofsve tosupport — it is clearly not feasible
to force the programmer to annotate every individual ococeeof an overloaded
identifier or special constant.

A natural and sensible lower bound seems to be the smallekisémg core decla-
ration the overloaded identifier or constant appears insistent with the treatment

11

of flexible records (see section 4). Preferably, this woudd &e the upper bound
as far as the standard is concerned, in order to achievestensbehaviour among
implementations.

Figure 27 (Overloaded Identifiers):

e [typo] * The types for the comparison operaters>, <=, and>= must correctly be
numtxt X numtxt — bool.

13 Issuesin Appendix G (What’s New?)

Section G.8 (Principal Environments):

[minor] * At the end of the section the authors explain that the intértihe restrictions on
free type variables at the toplevel (side-conditions iestB7 and 89) is to avoid reporting
free type variables to the user. However, judging from tise@éthe paragraph, this reason-
ing confuses two notions of type variable: type variablesaanantic objects, as appearing
in the formal rules of the Definition, and the yet undeterrdityges during Hindley/Milner
type inference, which are also represented by type vasablewever, both kinds are vari-
ables on completely different levels: the former are parthef formal framework of the
Definition, while the latter are an ‘implementation aspéia#it lies outside the scope of the
Definition’s formalism. Let us distinguish both by refeigito the former asemantic type
variablesand to the latter agndetermined types

The primary purpose of the aforementioned restrictionsasly is to avoid reportingn-
determined typew the user. However, they fail to achieve that. In fact, impossible to
enforce such behaviour within the formal framework of thdifigon, since it essentially
would require formalising type inference (the current fatism has no notion of undeter-
mined type). Consequently, the comment in section G.8 atheupossibility of relaxing
the restrictions by substituting arbitrary monotypes edsthe point as well.

In fact, the formal rules of the Definition actually imply tlegact opposite, namely that
an implementation mageverreject a program that results in undetermined types at the
toplevel, and is thus compelled to report them. The reaserpicitly given in the same
section: “implementations should not reject programs foiclv successful elaboration is
possible”. Consider the following program:

val r =ref nil;
r :=[true];

Rule 2 has to non-deterministically choose some tyfe st for the occurrence ofii | .
The choice ofr is not determined by the declaration itself: it is not useat, can it be
generalised, due to the value restriction. Howebem! is a perfectly valid choice for
7, and this choice will allow the entire program to elabora®® according to the quote
above, an implementation has to make exactly that choicev, Ndoth declarations are
entered separately into an interactive toplevel the impletation obviously has to defer
commitment to that choice until it has actually seen the séateclaration. Consequently,
it can do nothing else but reporting an undetermined typ#&i®first declaration. The only
effect the side conditions in rules 87 and 89 have on thisasttte types committed to later
may not contain free semantic type variables — but considefie way such variables are
introduced during type inference (mainly by generalisgtithe only possibility for this is
through a toplevel exception declaration containing a tgoéable®

5Note that this observation gives rise to the question whetreeclaim about the existence of principal envi-

12

There are two possibilities of dealing with this matter: {@dRe the formal rules as they are
and ignore the comment in the appendix, or (2) view the contimgan informal “further
restriction” and fix its actual formulation to match the odws$ intent. Since the comments
in Appendix G are not supposed to be a normative part of thenlliefi but merely ex-
planatory, and moreover are somewhat inconsistent, stréating should give the formal
rules priority and choose option (1). Unfortunately, titerpretation is incompatible with
implementation strategies relying on type passing, whiktgees must be determined prior
to execution.

Acknowledgements

Thanks go to the following people who helped with or withonbling in compiling this
list: Stefan Kahrs, Claudio Russo, Matthias Blume, Stepieeks, John Reppy, and peo-
ple on the sml-implementers list that recently came to Ked of course thanks go to the
designers of ML and authors of the Definition for the magnifiggrogramming language
— it seems to be the only serious language in existence, fmtveven a pedantic list of all
defects fits on a couple of pages.)

ronments in section 4.12 of the SML'90 Definition [MTH90] weadid in the first place. It most likely was not: a
declaration like the one af has no principal environment that would be expressibleiwithe formalism of the
Definition, despite allowing different choices of free imgigve type variables. The reasoning that this relaxation
was sufficient to regain principality is based on the same-upiof semantic type variables and undetermined
types as above. The relaxation does not solve the problemewjtansive declarations, since semantic type vari-
ables are rather unrelated to it — choosing a semantic tyjl@ for an undetermined type is no more principal
than choosing any particular monotype.

13

A

History

2001/10/11: Added minor issue: carriage return is not idetuas supported control
character in source code (Section 2.5). Some small claidita

2004/04/13: Reconsiderd and removed scoping subtletiggde names as an issue
(Section 4.10).

2004/06/22: Added minor issue: parsing ambiguities wittuemtial specifications
make scoping of sharing constraints ambiguous (Section 3.4

2005/01/13: Added minor issue: missing side conditionsigng consistent arities
in rules 64 and 78 (Section 5.7).

2005/01/26: Added typo in rule 28.
2006/07/18: Added principality issue with functors.
2007/01/22: Added typo in definition ¢foperator (Section 7.2).

References

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, David M@aeen

The Definition of Standard M{Revised)
The MIT Press, 1997

[MTH90] Robin Milner, Mads Tofte, Robert Harper

The Definition of Standard ML
The MIT Press, 1990

[MT91] Robin Milner, Mads Tofte

[K93]

[K96]

Commentary on Standard ML
The MIT Press, 1991

Stefan Kahrs

Mistakes and Ambiguities in the Definition of Standard ML
University of Edinburgh, 1993

http://ww. cs. ukc. ac. uk/ pubs/ 1993/ 569/

Stefan Kahrs

Mistakes and Ambiguities in the Definition of Standard ML déuatla
University of Edinburgh, 1996

ftp://ftp.dcs. ed. ac. uk/ pub/ snk/ SM./ errors-new. ps. Z

[DBO7] Derek Dreyer, Matthias Blume

Principal Type Schemes for Modular Programs
in: Proc. of the 2007 European Symposium on Programming
Springer-Verlag, 2007

14

	Introduction
	Issues in Section 2 (Syntax of the Core)
	Issues in Section 3 (Syntax of Modules)
	Issues in Section 4 (Static Semantics for the Core)
	Issues in Section 5 (Static Semantics for Modules)
	Issues in Section 6 (Dynamic Semantics for the Core)
	Issues in Section 7 (Dynamic Semantics for Modules)
	Issues in Section 8 (Programs)
	Issues in Appendix A (Derived Forms)
	Issues in Appendix B (Full Grammar)
	Issues in Appendix D (The Initial Dynamic Basis)
	Issues in Appendix E (Overloading)
	Issues in Appendix G (What's New?)
	History

