
Defects in the Revised Definition of Standard ML

Andreas Rossberg
Universität des Saarlandes

rossberg@ps.uni-sb.de

Updated 2007/01/22

1 Introduction

This document1 is intended to be a comprehensive list of all known bugs, ambiguities,
problems and other ‘grey areas’ in the revised Definition of Standard ML [MTHM97]. For
better overview of what really is important the issues are classified into several categories:

• major: mistakes that compromise soundness without an obvious fix,that create prob-
lems for implementers, or lead to annoying incompatibles among implementations,

• minor: mistakes that leave open questions as well but do not seem toproduce prob-
lems in practice,

• pedantic: nitpicking on issues that are not “quite right” but everybody knows how to
interpret them,

• typos: obvious slips in formal bits.

The list marks with * all issues that have been newly introduced in SML’97. Others are
inherited from SML’90 [MTH90].

Note that this compilation does not try to be a general critique of the language. It does
not discuss design decisions or weaknesses of particular features, but merely lists problems
with the specification of the language.

2 Issues in Section 2 (Syntax of the Core)

Section 2.5 (Lexical analysis):

• [minor] In Section 2.2 the Definition includes only space, tab, newline, and form-
feed into the set of obligatory formatting characters, thatare allowed in source code.
However, some major platforms require use of the carriage return character in text
files. In order to achieve portability of sources across platforms it should be included
as well. Preferably, for consistency, all formatting characters should be included, for
which there is explicit escape syntax.

1This document has been derived from Appendix A of the documentation to HaMLet, www.ps.uni-
sb.de/hamlet

1

rossberg@ps.uni-sb.de

Section 2.6 (Infixed Operators):

• [minor] The Definition says that “the only required use ofop is in prefixing a non-
infixed occurrence of an identifier which has infix status”. This is rather vague, since
it is not clear whether occurrences in constructor and exception bindings count as
non-infixed [K93].

Section 2.8 (Grammar), Figure 4 (Expressions, Matches, Declarations and Bindings):

• [pedantic] The syntax rules fordec are highly ambiguous. The productions for
empty declarations and sequencing allow the derivation of arbitrary sequences of
empty declarations for any input.

• [pedantic] Another ambiguity is that a sequence of the formdec1 dec2 dec3 can be
reduced in two ways todec: either viadec12 dec3 or viadec1 dec23 [K93]. See also
section 3.

Section 2.9 (Syntactic Restrictions):

• [pedantic] * The restriction thatvalbinds may not bind the same identifier twice
(2nd bullet) is not a syntactic restriction as it depends on the identifier status of the
vids in the patterns of avalbind . Identifier status is derived by the elaboration rules.

Ideally, all restrictions should be handled by appropriateside conditions in the rules
of the static semantics instead.

• [minor] * An important syntactic restriction is missing:

“Any tyvar occurring on the right side of atypbind or datbind of the
form tyvarseq tycon = · · · must occur intyvarseq .”

This restriction is analogous to the one given fortyvars in type specifications (section
3.5, item 4). Without it the type system would be unsound.2

3 Issues in Section 3 (Syntax of Modules)

Section 3.4 (Grammar for Modules), Figure 6 (Structure and Signature Expressions):

• [pedantic] The syntax rules forstrdec contain the same ambiguities with respect to
sequencing and empty declarations as those fordec (see section 2).

• [minor] Moreover, there are two different ways to reduce a sequencedec1 dec2 of
core declarations into astrdec: via strdec1 strdec2 and viadec [K93]. Both parses
are not equivalent since they provide different contexts for overloading resolution
(Appendix E). For example, appearing on structure level, the two declarations

fun f x = x + x
val a = f 1.0

2Interestingly enough, in the SML’90 Definition the restriction was present, but the corresponding one for
specifications was missing [MT91].

2

may be valid if parsed asdec, but do not type check if parsed asstrdec1 strdec2

because overloading of+ gets defaulted toint. The problem does not seem to
arise in practice, though, because most implementations use smaller contexts for
overloading resolution (see section 12).

• [minor] Similarly, it is possible to parse a structure-levellocal declaration con-
taining only core declarations in two ways: as adec or as astrdec [K93]. This
produces the same semantic ambiguity.

Section 3.4 (Grammar for Modules), Figure 7 (Specifications):

• [pedantic] Similar as fordec andstrdec, there exist ambiguities in parsing empty
and sequencedspecs.

• [minor] The ambiguity extends to sharing specifications. Consider:

type t
type u
sharing type t = u

This snippet can be parsed in at least three ways, with the sharing constraint taking
scope over either both, or only one, or neither type specification. Since only the first
alternative can be elaborated successfully, the validity of the program depends on
how the ambiguity is resolved.

The proper and most permissive disambiguation rule is to make sequential specifica-
tions and sharing specifications both left associative at the same precedence level. It
could be expressed as a syntactic restriction stating that “The spec2 in a sequential
specification may not contain a sharing specification.”

Section 3.4 (Grammar for Modules), Figure 8 (Functors and Top-level Declarations):

• [minor] * Finally, another ambiguity exists for reducing a sequencestrdec1 strdec2

to a topdec: it can be done either by first reducing tostrdec, or to strdec1 topdec2.
The latter is more restrictive with respect to free type variables (but see section 13
with regard to this).

Altogether, ignoring the infinite number of derivations involving empty declarations, the
grammar in the Definition allows three ambiguous ways to reduce a sequence of twodecs
to a topdec, as shown by the following diagram. All imply different semantics. A further
ambiguity arises at the program level (see section 8).

dec1 dec2

dec strdec1 strdec2

strdec strdec1 topdec2

topdec

3

4 Issues in Section 4 (Static Semantics for the Core)

Section 4.8 (Non-expansive Expressions):

• [minor] * The definition of non-expansiveness is purely syntactic and does only
consider the right hand side of a binding. However, an exception may result from
matching against a non-exhaustive pattern on the left hand side. It is rather incon-
sistent to disallowraise expressions in non-expansive bindings but allow implicit
exceptions in the disguise of pattern match failure. More seriously, the possibility of
exceptions stemming from polymorphic bindings is incompatible with type passing
implementations.

Section 4.9 (Type Structures and Type Environments):

• [pedantic] The definition of the Abs operator demands introduction of “new distinct”
type names. However, type names can only be new relative to a context. To be
precise, Abs would thus need an additional argumentC [K96].

• [minor] Values inabstype declarations that are potentially polymorphic but re-
quire equality types have no principal type [K96]. For example, in the declaration

abstype t = T with
fun eq(x,y) = x = y

end

the principal type ofeq insidethe scope ofabstype clearly is’’a * ’’a ->
bool. However, outside the scope this type is not principal because’’a cannot
be instantiated byt. Neither wouldt * t -> bool be principal, of course. Al-
though not strictly a bug (there is nothing which enforces the presence of principal
typings in the revised Definition), this semantics is very hard to implement faithfully,
since type inference had to deal with unresolved type schemes and to cascadingly
defer decisions about instantiation and generalisation until the correct choice is de-
termined. Most if not all SML implementations assigneq the type’’a * ’’a
-> bool.

• [minor] A related problem is the fact that the rules forabstype may infer type
structures that do not respect equality [K96]:

abstype t = T with
datatype u = U of t

end

Outside the scope of thisabstype declaration typeu will still be an equality type.
Values of typet can thus be compared through the backdoor:

fun eqT(x,y) = U x = U y

Section 4.10 (Inference Rules):

• [minor] * The comment to rule 26 states that a declaration like

datatype t = T
val rec T = fn x => x

4

is legal sinceC + VE overwrites identifier status. However, this comment omits an
important point: in the corresponding rule 126 of the dynamic semantics recursion is
handled differently so that the identifier status isnot overwritten. Consequently, the
second declaration will raise aBind exception. It arguably is a serious ill-design to
infer inconsistent identifier status in the static and dynamic semantics, but fortunately
it does not violate soundness in this case. Most implementations do not implement
the ‘correct’ dynamic semantics, though.

• [typo] There is an unmatched left parenthesis in the consequent of rule 28.

Section 4.11 (Further Restrictions):

• [minor] Under item 1 the Definition states that “the program context”must deter-
mine the exact type of flexible records, but it does not specify any bounds on the size
of this context. Unlimited context is clearly infeasible since it is incompatible with
separate compilation and withlet polymorphism: at the point of generalisation the
structure of a type must be determined precisely enough to know what we have to
quantify over.3 The context should thus be restricted to at least the innermost value
declaration surrounding the flexible record pattern.

• [minor] Under item 2 the Definition demands that a compiler must give warnings
whenever a pattern is redundant or a match is non-exhaustive. However, this require-
ment is inconsistent for two reasons:

1. * There is no requirement for consistency of datatype constructors in sharing
specifications or type realisations. For example,

datatype t = A | B
datatype u = C
sharing type t = u

is a legal specification. Likewise,

sig datatype t = A | B end where type t = bool

is valid. Actually, this may be considered a serious bug on its own, although
the Definition argues that inconsistent signatures are “notvery significant in
practice” (section G.9). If such an inconsistent signatureis used to specify a
functor argument it allows a mix of constructors to appear inmatches in the
functor’s body, rendering the terms of irredundancy and exhaustiveness com-
pletely meaningless.

2. It is difficult in general to check equality of exception constructors – they may
or may not be aliased. Inside a functor, constructor equality might depend on
the actual argument structure the functor is applied to. It is possible to check all
this by performing abstract interpretation (such that redundant matches are de-
tected at functor application), but this is clearly infeasible weighed against the
benefits, in particular in conjunction with separate compilation. The Definition
should point out that it only requires considering syntactic equivalence in the
case of exception constructors.

5 Issues in Section 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

3Polymorphic approaches to record typing are clearly not supported by the Definition.

5

• [pedantic] * The rules 64 and 78 use the notation{t1 7→ θ1, · · · , tn 7→ θn} to
specify realisations. However, this notation is not definedanywhere in the Definition
for infinite maps like realisations – section 4.2 only introduces it for finite maps.

• [minor] * More seriously, both rules lack side conditions to ensure consistent arities
for domain and range of the constructed realisation. Because ϕ can hence fail to be
well-formed (section 5.2), the applicationϕ(E) is not well-defined. The necessary
side conditions are:

t ∈ TyName(k) (64)

ti ∈ TyName(k), i = 1..n (78)

• [minor] * The presence of functors provides a form of explicit polymorphism which
interferes with principal typing in the core language. Consider the following example
[DB07]:

functor F(type t) =
struct val id = (fn x => x) (fn x => x) end

structure A = F(type t = int)
structure B = F(type t = bool)
val a = A.id 3
val b = B.id true

The declaration ofid cannot be polymorphic, due to the value restriction. Neverthe-
less, assigning it typet -> t would make the program valid. However, finding this
type would require the type inference algorithm to skolemize all undetermined types
in a functor body’s result signature over the types appearing in its argument signa-
ture, and then perform a form of higher-order unification. Consequently, almost all
existing implementations reject the program.4

• [minor] * The side conditions on free type variables in rules 87 and 89do not have
the effect that obviously was intended, see section 13.

6 Issues in Section 6 (Dynamic Semantics for the Core)

Section 6.4 (Basic Values):

• [pedantic] The APPLY function has no access to program state. This suggests that
library primitives may not be stateful, implying that a lot of interesting primitives
could not be added to the language without extending the Definition itself [K93].

On the other hand, any non-trivial library type (e.g. arraysor I/O streams) requires
extension of the definition of values or state anyway (and equality types – consider
array). The Definition should probably contain a comment in this regard.

4Interestingly, MLton accepts the program, thanks to its defunctorization approach. However, it likewise
accepts similar programs that arenotvalid Standard ML, e.g.:

functor F() = struct val id = (fn x => x) (fn x => x) end
structure A = F()
structure B = F()
val a = A.id 3
val b = B.id true

6

7 Issues in Section 7 (Dynamic Semantics for Modules)

Section 7.2 (Compound Objects):

• [typo] * In the definition of the operator↓: Env×Int → Env, the triple “(SI ,TE ,VI)”
should read “(SI ,TI ,VI)”.

Section 7.3 (Inference Rules):

• [typo] * Rule 182 contains a typo: both occurrences ofIB have to be replaced byB.
The rule should actually read:

InterB ⊢ sigexp ⇒ I 〈B ⊢ funbind ⇒ F 〉

B ⊢ funid (strid : sigexp) = strexp 〈and funbind〉 ⇒
{funid 7→ (strid : I, strexp, B)}〈+F 〉

(182)

• [typo] * The rules for toplevel declarations are wrong: in the conclusions, the result
right of the arrow must beB′〈+B′′〉 instead ofB′〈′〉 in all three rules:

B ⊢ strdec ⇒ E B′ = E in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ strdec 〈topdec〉 ⇒ B′〈+B′′〉
(184)

InterB ⊢ sigdec ⇒ G B′ = G in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ sigdec 〈topdec〉 ⇒ B′〈+B′′〉
(185)

B ⊢ fundec ⇒ F B′ = F in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ fundec 〈topdec〉 ⇒ B′〈+B′′〉
(186)

8 Issues in Section 8 (Programs)

• [minor] The comment to rule 187 states that a failing elaboration hasno effect.
However, it is not clear what infix status is in scope after a failing elaboration of a
program that contains top-level infix directives.

• [minor] * There is another syntactic ambiguity for programs. A note in section 3.4,
Figure 8 restricts the parsing oftopdecs:

“No topdec may contain, as an initial segment, astrdec followed by a
semicolon.”

The intention obviously is to make parsing of toplevel semicolons unambiguous so
that they always terminate a program. As a consequence of theparsing ambiguities
for declaration sequences (see section 3) the rule is not sufficient, however: a se-
quencedec1; dec2; of core level declarations with a terminating semicolon canbe
first reduced todec;, then tostrdec;, and finallyprogram . This derivation does not
exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid
parse, which results in quite different behaviour with respect to program execution.

7

• [pedantic] The negative premise in rule 187 has unfortunate implications: inter-
preted strictly it precludes any conforming implementation from providing any sort
of conservative semantic extension to the language. Any extension that allows dec-
larations to elaborate that would be illegal according to the Definition (e.g. consider
polymorphic records) can be observed through this rule and change the behaviour of
consecutive declarations. Consider for example:

val s = "no";
strdec

val s = "yes";
print s;

where thestrdec only elaborates if some extension is supported. In that casethe
program will printyes, otherwiseno.

This probably indicates that formalising an interactive toplevel is not worth the trou-
ble.

9 Issues in Appendix A (Derived Forms)

Text:

• [pedantic] The paragraph explaining rewriting of thefvalbind form rules out mix-
tures offvalbinds and ordinaryvalbinds. However, the way it is formulated it does
not rule out all combinations. It should rather say that all value bindings of the form
pat = exp and fvalbind or rec fvalbind are disallowed.

Figure 15 (Derived forms of Expressions):

• [pedantic] The Definition is somewhat inaccurate about several of the derived forms
of expressions and patterns. It does not make a proper distinction between atomic
and non-atomic phrases. Some of the equivalent forms are notin the same syntactic
class [MT91, K93].

Figure 17 (Derived forms of Function-value Bindings and Declarations):

• [minor] The syntax offvalbinds as given in the Definition enforces that all type
annotations are syntactically equal, if given. This is unnecessarily restrictive and
almost impossible to implement [K93]. The obvious solutionis the more permissive
syntax:

〈op〉vid atpat11 · · · atpat1n 〈:ty1〉 = exp1

| 〈op〉vid atpat21 · · · atpat2n 〈:ty2〉 = exp2

| · · · · · ·
| 〈op〉vid atpatm1 · · · atpatmn 〈:tym〉 = expm

〈and fvalbind 〉

This probably was the original intention of the authors anyway.

Figure 19 (Derived forms of Specifications and Signature Expressions):

• [minor] * The derived form that allows several definitional type specifications to be
connected viaand is defined in a way that makes its scoping rules inconsistent with
all other occurences ofand in the language. In the example

8

type t = int
signature S =
sig

type t = bool
and u = t

end

typeu will be equal tobool, notint like in equivalent declarations. It would have
been more consistent to rewrite the derived form to

include
sig type tyvarseq1 tycon1

and · · ·
· · ·
and tyvarseqn tyconn

end where type tyvarseq1 tycon1 = ty1

· · ·
where type tyvarseqn tyconn = tyn

and delete the separate derived form for single definitionalspecifications.

• [pedantic] * The Definition defines the phrase

spec sharing longstrid1 = · · · = longstridn

as a derived form. However, this form technically is not a derived form, since it
cannot be rewritten in a purely syntactic manner – its expansion depends on the
static environment.

• [major] * The derived form for type realisations connected byand is not only com-
pletely redundant and alien to the rest of the language (and is nowhere else followed
by a second reserved word), it also is tedious to parse, sincethis part of the grammar
is LALR(2) as it stands. It can be turned into LALR(1) only by abunch of really ugly
transformations. Consequently, almost no SML system seemsto be implementing it
correctly. Even worse, several systems implement it in a waythat leads to rejection
of programsnotusing the form.

10 Issues in Appendix B (Full Grammar)

Text:

• [pedantic] The first sentence is not true since there is a derived form forprograms
(Figure 18). Moreover, it is not obvious why the appendix refrains from also pro-
viding a full version of the module and program grammar. It contains quite a lot of
derived forms as well, and the section title leads the readerto expect it.

• [minor] The Definition gives precedence rules for disambiguating expressions, stat-
ing that “the use of precedence does not increase the class ofadmissible phrases”.
However, the rules are not sufficient to disambiguate all possible phrases. Moreover,
for some phrases they actually rule outanypossible parse, e.g.

a andalso if b then c else d orelse e

has no valid parse according to these rules. So the above statement is rather in-
consistent [K93]. The common way to deal with this probably is to just use Yacc

9

precedence declarations for expression keywords that correspond to the precedence
hierarchy given in the Definition. This seems to be the best way to approximate the
intention of the Definition’s rules.

• [major] There is no comment on how to deal with the most annoying problem in
the full grammar, the infinite look-ahead required to parse combinations of function
clauses andcase expressions, like in:

fun f x = case e1 of z => e2
| f y = e3

According to the grammar this ought to be legal. However, parsing this would ei-
ther require horrendous grammar transformations, backtracking, or some nasty and
expensive lexer hack [K93]. Consequently, there is no SML implementation being
able to parse the above fragment. To legalise the behaviour of implementations, an
informal restriction of the form

The expressionsexp = 1, . . . , expm−1 in a fvalbind may not terminate
with amatch.

could be added.

Figure 21 (Grammar: Declarations and Bindings):

• [minor] The syntax given forfvalbind is incomplete as pointed out by the corre-
sponding note. This is not really a bug but sloppy enough to cause some divergence
among implementations.

Figure 22 (Grammar: Patterns):

• [minor] While there are additional non-terminalsinfexp and appexp to disam-
biguate parsing of infix expressions, there is no such disambiguation for patterns.
This implies that a pattern likex:t ++ y can be parsed if++ is an appropriate
infix constructor [K96]. Of course, this would result in heavy grammar conflicts.

This appears to be an oversight. The full grammar obviously implemented by all
SML systems is something like:

atpat ::= ...like before...
apppat ::= atpat

〈op〉longvid atpat

infpat ::= apppat

infpat1 vid infpat2

pat ::= infpat

pat : ty

〈op〉vid 〈: ty〉 as pat

11 Issues in Appendix D (The Initial Dynamic Basis)

• [minor] The Definition does specify the minimal initial basis but it does not specify
what the initial state has to contain. Of course, it should atleast contain the exception
namesMatch andBind. The obvious definition thus is:

s0 = ({}, {Match, Bind})

10

• [pedantic] The Definition does nowhere demand that the basis a library provides has
to be consistent in any way. Nor does it require consistency between intial basis and
initial state.

12 Issues in Appendix E (Overloading)

• [major] Overloading is the most hand-waving part of the otherwise pleasantly accu-
rate Definition. Due to the lack of formalism and specific rules, overloading resolu-
tion does not work consistently among SML systems. For example, type-checking
of the following declaration does not succeed on all systems:

fun f(x,y) = (x + y)/y

• [minor] The Definition defines the overloading mechanism by enumerating all over-
loaded entities the library provides. This is rather unfortunate. It would be desirable
if the rules would be a bit more generic, avoiding hardcodingoverloading classes and
the set of overloaded library identifiers on one hand, and allowing libraries to extend
it in systematic ways on the other. More generic rules could also serve as a better
guidance for implementing overloading.

A more generic description of overloading classes might be to formalise them as a
pair of a type name set and the type name being the designated default:

(T, t) ∈ OverloadingClass= Fin(TyName(0)) × TyName(0)

An overloading class iswell-formediff the following properties hold:

t ∈ T (1)

Eq(T) = ∅ ∨ t admits equality (2)

where Eq(T) = {t ∈ T | t admits equality}. A set {(T1, t1), · · · , (Tn, tn)} of
overloading classes isconsistentiff

for all i ∈ {1, .., n}, (Ti, ti) well-formed (3)

for all i, j ∈ {1, .., n}, Ti ∩ Tj = ∅ ∨ |{ti, tj} ∩ Ti ∩ Tj| = 1 (4)

The set of all overloading classes used in an initial basis must be consistent. A library
could provide arbitrary overloading classes, as long as they adhere to these restric-
tions. The restrictions guarantee that intersection of overloading classes is reflexive,
associative and commutative with respect to the default andthat there always is a
unique default. We claim that this is necessary to make defaulting unambiguous and
enable a feasible type inference algorithm. Note that theseproperties hold for the
minimal initial basis given in section E.1, although the Definition forgets to demand
that any extension of the basic overloading classes must be consistent with respect to
equality (well-formedness property (2)).

• [minor] * That the Definition specifies anupperbound on the context a compiler
may consider to resolve overloading is quite odd – of course,implementations can-
not be prohibited to conservatively extend the language by making more programs
elaborate. On the other hand, much more important would havebeen to specify a
lower bound on what implementationshave tosupport – it is clearly not feasible
to force the programmer to annotate every individual occurence of an overloaded
identifier or special constant.

A natural and sensible lower bound seems to be the smallest enclosing core decla-
ration the overloaded identifier or constant appears in, consistent with the treatment

11

of flexible records (see section 4). Preferably, this would also be the upper bound
as far as the standard is concerned, in order to achieve consistent behaviour among
implementations.

Figure 27 (Overloaded Identifiers):

• [typo] * The types for the comparison operators<, >, <=, and>= must correctly be
numtxt× numtxt→ bool.

13 Issues in Appendix G (What’s New?)

Section G.8 (Principal Environments):

[minor] * At the end of the section the authors explain that the intentof the restrictions on
free type variables at the toplevel (side-conditions in rules 87 and 89) is to avoid reporting
free type variables to the user. However, judging from the rest of the paragraph, this reason-
ing confuses two notions of type variable: type variables assemantic objects, as appearing
in the formal rules of the Definition, and the yet undetermined types during Hindley/Milner
type inference, which are also represented by type variables. However, both kinds are vari-
ables on completely different levels: the former are part ofthe formal framework of the
Definition, while the latter are an ‘implementation aspect’that lies outside the scope of the
Definition’s formalism. Let us distinguish both by referring to the former assemantic type
variablesand to the latter asundetermined types.

The primary purpose of the aforementioned restrictions obviously is to avoid reportingun-
determined typesto the user. However, they fail to achieve that. In fact, it isimpossible to
enforce such behaviour within the formal framework of the Definition, since it essentially
would require formalising type inference (the current formalism has no notion of undeter-
mined type). Consequently, the comment in section G.8 aboutthe possibility of relaxing
the restrictions by substituting arbitrary monotypes misses the point as well.

In fact, the formal rules of the Definition actually imply theexact opposite, namely that
an implementation mayneverreject a program that results in undetermined types at the
toplevel, and is thus compelled to report them. The reason isexplicitly given in the same
section: “implementations should not reject programs for which successful elaboration is
possible”. Consider the following program:

val r = ref nil;
r := [true];

Rule 2 has to non-deterministically choose some typeτ list for the occurrence ofnil.
The choice ofτ is not determined by the declaration itself: it is not used, nor can it be
generalised, due to the value restriction. However,bool is a perfectly valid choice for
τ , and this choice will allow the entire program to elaborate.So according to the quote
above, an implementation has to make exactly that choice. Now, if both declarations are
entered separately into an interactive toplevel the implementation obviously has to defer
commitment to that choice until it has actually seen the second declaration. Consequently,
it can do nothing else but reporting an undetermined type forthe first declaration. The only
effect the side conditions in rules 87 and 89 have on this is that the types committed to later
may not contain free semantic type variables – but considering the way such variables are
introduced during type inference (mainly by generalisation), the only possibility for this is
through a toplevel exception declaration containing a typevariable.5

5Note that this observation gives rise to the question whether the claim about the existence of principal envi-

12

There are two possibilities of dealing with this matter: (1)take the formal rules as they are
and ignore the comment in the appendix, or (2) view the comment as an informal “further
restriction” and fix its actual formulation to match the obvious intent. Since the comments
in Appendix G are not supposed to be a normative part of the Definition but merely ex-
planatory, and moreover are somewhat inconsistent, strictreading should give the formal
rules priority and choose option (1). Unfortunately, this interpretation is incompatible with
implementation strategies relying on type passing, where all types must be determined prior
to execution.

Acknowledgements

Thanks go to the following people who helped with or without knowing in compiling this
list: Stefan Kahrs, Claudio Russo, Matthias Blume, StephenWeeks, John Reppy, and peo-
ple on the sml-implementers list that recently came to life.And of course thanks go to the
designers of ML and authors of the Definition for the magnificent programming language
– it seems to be the only serious language in existence, for which even a pedantic list of all
defects fits on a couple of pages.;-)

ronments in section 4.12 of the SML’90 Definition [MTH90] wasvalid in the first place. It most likely was not: a
declaration like the one ofr has no principal environment that would be expressible within the formalism of the
Definition, despite allowing different choices of free imperative type variables. The reasoning that this relaxation
was sufficient to regain principality is based on the same mix-up of semantic type variables and undetermined
types as above. The relaxation does not solve the problem with expansive declarations, since semantic type vari-
ables are rather unrelated to it – choosing a semantic type variable for an undetermined type is no more principal
than choosing any particular monotype.

13

A History

• 2001/10/11: Added minor issue: carriage return is not included as supported control
character in source code (Section 2.5). Some small clarifications.

• 2004/04/13: Reconsiderd and removed scoping subtleties for type names as an issue
(Section 4.10).

• 2004/06/22: Added minor issue: parsing ambiguities with sequential specifications
make scoping of sharing constraints ambiguous (Section 3.4).

• 2005/01/13: Added minor issue: missing side conditions ensuring consistent arities
in rules 64 and 78 (Section 5.7).

• 2005/01/26: Added typo in rule 28.

• 2006/07/18: Added principality issue with functors.

• 2007/01/22: Added typo in definition of↓ operator (Section 7.2).

References

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, David MacQueen
The Definition of Standard ML(Revised)
The MIT Press, 1997

[MTH90] Robin Milner, Mads Tofte, Robert Harper
The Definition of Standard ML
The MIT Press, 1990

[MT91] Robin Milner, Mads Tofte
Commentary on Standard ML
The MIT Press, 1991

[K93] Stefan Kahrs
Mistakes and Ambiguities in the Definition of Standard ML
University of Edinburgh, 1993
http://www.cs.ukc.ac.uk/pubs/1993/569/

[K96] Stefan Kahrs
Mistakes and Ambiguities in the Definition of Standard ML – Addenda
University of Edinburgh, 1996
ftp://ftp.dcs.ed.ac.uk/pub/smk/SML/errors-new.ps.Z

[DB07] Derek Dreyer, Matthias Blume
Principal Type Schemes for Modular Programs
in: Proc. of the 2007 European Symposium on Programming
Springer-Verlag, 2007

14

	Introduction
	Issues in Section 2 (Syntax of the Core)
	Issues in Section 3 (Syntax of Modules)
	Issues in Section 4 (Static Semantics for the Core)
	Issues in Section 5 (Static Semantics for Modules)
	Issues in Section 6 (Dynamic Semantics for the Core)
	Issues in Section 7 (Dynamic Semantics for Modules)
	Issues in Section 8 (Programs)
	Issues in Appendix A (Derived Forms)
	Issues in Appendix B (Full Grammar)
	Issues in Appendix D (The Initial Dynamic Basis)
	Issues in Appendix E (Overloading)
	Issues in Appendix G (What's New?)
	History

