
5 ComplexityWe have already used the O notation to denote the general behaviour of analgorithm as a funtion of the problem size. We have said that an algorithm isO(logn) if its running time, T (n), to solve a problem of size n is proportionalto logn.5.1 The O notationFormally, O(g(n)) is the set of funtions, f , suh that for some  > 0,f(n) < g(n)for all positive integers, n > N , ie for all suÆiently large N . Another way ofwriting this is: limn!1f(n)g(n) � Informally, we say the O(g) is the set of all funtions whih grow no faster thang. The funtion g is an upper bound to funtions in O(g).We are interested in the set of funtions de�ned by the O notation beause wewant to argue about the relative merits of algorithms - independent of theirimplementations. That is, we are not onerned with the language or mahineused; we want a means of omparing algorithms whih is relevant to any imple-mentation.We an de�ne two other funtions: 
(g) and �(g) .
(g) the set of funtions f(n) for whih f(n) � g(n) for all positive integers,n > N , and �(g) = 
(g) \ O(g)We an derive: f 2 �(g)if limn!1f(n)g(n) = Thus, 
(g) is a lower bound - funtions in 
(g) grow faster than g and �(g)are funtions that grow at the same rate as g. In these last two statements -as in most of the disussion on omplexity theory - "within a onstant fator"is understood. Di�erent languages, ompilers, mahines, operating systems, etwill produe di�erent onstant fators: it is the general behaviour of the runningtime as n inreases to very large values that we're onerned with.1



5.2 Properties of the O notationThe following general properties of O notation expressions may be derived:1. Constant fators may be ignored:For all k > 0, kf is O(f).e.g. an2 and bn2 are both O(n2).2. Higher powers of n grow faster than lower powers:nr is O(ns) if 0 � r � s.3. The growth rate of a sum of terms is the growth rate of its fastest growingterm:If f is O(g), then f + g is O(g).e.g. an3 + bn2 is O(n3).4. The growth rate of a polynomial is given by the growth rate of its leadingterm (f. (2), (3)):If f is a polynomial of degree d, then f is O(nd).5. If f grows faster than g, whih grows faster than h, then f grows fasterthan h.6. The produt of upper bounds of funtions gives an upper bound for theprodut of the funtions:If f is O(g) and h is O(r), then fh is O(gr)e.g. if f is O(n2) and g is O(logn), then fg is O(n2 logn).7. Exponential funtions grow faster than powers:nk is O(bn), for all b > 1; k � 0,e.g. n4 is O(2n) and n4 is O(exp(n)).8. Logarithms grow more slowly than powers:logb n is O(nk) for all b > 1; k > 0e.g. log2 n is O(n0:5).9. All logarithms grow at the same rate:logb n is �(logd n) for all b; d > 1.10. The sum of the �rst n rth powers grows as the (r + 1)th power:nXk=1 kris�(nr+1)e.g. Pnk=1 i = (n+1)n2 is�(n2))2



5.3 Polynomial and Intratable Algorithms5.3.1 Polynomial time omplexityAn algorithm is said to have polynomial time omplexity i� it is O(nd) for someinteger d.5.3.2 Intratable AlgorithmsA problem is said to be intratable if no algorithm with polynomial time om-plexity is known for it. We will briey examine some intratable problems in alater setion.
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5.4 Analysing an algorithm5.4.1 Simple Statement SequeneFirst note that a sequene of statements whih is exeuted one only is O(1).It doesn't matter how many statements are in the sequene - only that thenumber of statements (or the time that they take to exeute) is onstant for allproblems.5.4.2 Simple LoopsIf a problem of size n an be solved with a simple loop:for(i=0;i<n;i++)f s; gwhere s is an O(1) sequene of statements, then the time omplexity is nO(1)or O(n).If we have two nested loops:for(j=0;j<n;j++)for(i=0;i<n;i++)f s; gthen we have n repetitions of an O(n) sequene, giving a omplexity of: nO(n)or O(n2).Where the index 'jumps' by an inreasing amount in eah iteration, we mighthave a loop like:h = 1;while( h � n )f s;h = 2*h; gin whih h takes values 1, 2, 4, ... until it exeeds n. This sequene has1 + blog2 n values, so the omplexity is O(log2 n).If the inner loop depends on an outer loop index:for(j=0;j<n;j++)for(i=0;i<j;i++){ s; }The inner loop for(i=0; .. gets exeuted i times, so the total is:nX1 i = n(n+ 1))2and the omplexity is O(n2). We see that this is the same as the result fortwo nested loops above, so the variable number of iterations of the inner loopdoesn't a�et the `big piture'. 4



However, if the number of iterations of one of the loops dereases by a onstantfator with every iteration:h = n;while( h > 0 ){for(i=0;i<n;i++){ s; }h = h/2;}Then� there are log2 n iterations of the outer loop and� the inner loop is O(n),so the overall omplexity is O(n logn). This is substantially better than theprevious ase in whih the number of iterations of one of the loops dereased bya onstant for eah iteration!John Morris, 1996
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