
5 ComplexityWe have already used the O notation to denote the general behaviour of analgorithm as a fun
tion of the problem size. We have said that an algorithm isO(logn) if its running time, T (n), to solve a problem of size n is proportionalto logn.5.1 The O notationFormally, O(g(n)) is the set of fun
tions, f , su
h that for some 
 > 0,f(n) < 
g(n)for all positive integers, n > N , ie for all suÆ
iently large N . Another way ofwriting this is: limn!1f(n)g(n) � 
Informally, we say the O(g) is the set of all fun
tions whi
h grow no faster thang. The fun
tion g is an upper bound to fun
tions in O(g).We are interested in the set of fun
tions de�ned by the O notation be
ause wewant to argue about the relative merits of algorithms - independent of theirimplementations. That is, we are not 
on
erned with the language or ma
hineused; we want a means of 
omparing algorithms whi
h is relevant to any imple-mentation.We 
an de�ne two other fun
tions: 
(g) and �(g) .
(g) the set of fun
tions f(n) for whi
h f(n) � 
g(n) for all positive integers,n > N , and �(g) = 
(g) \ O(g)We 
an derive: f 2 �(g)if limn!1f(n)g(n) = 
Thus, 
(g) is a lower bound - fun
tions in 
(g) grow faster than g and �(g)are fun
tions that grow at the same rate as g. In these last two statements -as in most of the dis
ussion on 
omplexity theory - "within a 
onstant fa
tor"is understood. Di�erent languages, 
ompilers, ma
hines, operating systems, et
will produ
e di�erent 
onstant fa
tors: it is the general behaviour of the runningtime as n in
reases to very large values that we're 
on
erned with.1



5.2 Properties of the O notationThe following general properties of O notation expressions may be derived:1. Constant fa
tors may be ignored:For all k > 0, kf is O(f).e.g. an2 and bn2 are both O(n2).2. Higher powers of n grow faster than lower powers:nr is O(ns) if 0 � r � s.3. The growth rate of a sum of terms is the growth rate of its fastest growingterm:If f is O(g), then f + g is O(g).e.g. an3 + bn2 is O(n3).4. The growth rate of a polynomial is given by the growth rate of its leadingterm (
f. (2), (3)):If f is a polynomial of degree d, then f is O(nd).5. If f grows faster than g, whi
h grows faster than h, then f grows fasterthan h.6. The produ
t of upper bounds of fun
tions gives an upper bound for theprodu
t of the fun
tions:If f is O(g) and h is O(r), then fh is O(gr)e.g. if f is O(n2) and g is O(logn), then fg is O(n2 logn).7. Exponential fun
tions grow faster than powers:nk is O(bn), for all b > 1; k � 0,e.g. n4 is O(2n) and n4 is O(exp(n)).8. Logarithms grow more slowly than powers:logb n is O(nk) for all b > 1; k > 0e.g. log2 n is O(n0:5).9. All logarithms grow at the same rate:logb n is �(logd n) for all b; d > 1.10. The sum of the �rst n rth powers grows as the (r + 1)th power:nXk=1 kris�(nr+1)e.g. Pnk=1 i = (n+1)n2 is�(n2))2



5.3 Polynomial and Intra
table Algorithms5.3.1 Polynomial time 
omplexityAn algorithm is said to have polynomial time 
omplexity i� it is O(nd) for someinteger d.5.3.2 Intra
table AlgorithmsA problem is said to be intra
table if no algorithm with polynomial time 
om-plexity is known for it. We will brie
y examine some intra
table problems in alater se
tion.

3



5.4 Analysing an algorithm5.4.1 Simple Statement Sequen
eFirst note that a sequen
e of statements whi
h is exe
uted on
e only is O(1).It doesn't matter how many statements are in the sequen
e - only that thenumber of statements (or the time that they take to exe
ute) is 
onstant for allproblems.5.4.2 Simple LoopsIf a problem of size n 
an be solved with a simple loop:for(i=0;i<n;i++)f s; gwhere s is an O(1) sequen
e of statements, then the time 
omplexity is nO(1)or O(n).If we have two nested loops:for(j=0;j<n;j++)for(i=0;i<n;i++)f s; gthen we have n repetitions of an O(n) sequen
e, giving a 
omplexity of: nO(n)or O(n2).Where the index 'jumps' by an in
reasing amount in ea
h iteration, we mighthave a loop like:h = 1;while( h � n )f s;h = 2*h; gin whi
h h takes values 1, 2, 4, ... until it ex
eeds n. This sequen
e has1 + blog2 n
 values, so the 
omplexity is O(log2 n).If the inner loop depends on an outer loop index:for(j=0;j<n;j++)for(i=0;i<j;i++){ s; }The inner loop for(i=0; .. gets exe
uted i times, so the total is:nX1 i = n(n+ 1))2and the 
omplexity is O(n2). We see that this is the same as the result fortwo nested loops above, so the variable number of iterations of the inner loopdoesn't a�e
t the `big pi
ture'. 4



However, if the number of iterations of one of the loops de
reases by a 
onstantfa
tor with every iteration:h = n;while( h > 0 ){for(i=0;i<n;i++){ s; }h = h/2;}Then� there are log2 n iterations of the outer loop and� the inner loop is O(n),so the overall 
omplexity is O(n logn). This is substantially better than theprevious 
ase in whi
h the number of iterations of one of the loops de
reased bya 
onstant for ea
h iteration!
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